Dimension Expansion of Neural Networks '
نویسنده
چکیده
In this paper, we investigate the dimension expansion property of 3 layer feedforward neural networks and provide a helpful insight into how neural networks define complex decision boundaries. First, we note that adding a hidden neuron is equivalent to expanding the dimension of the space defined by the outputs of the hidden neurons. Thus, if the number of hidden neurons is larger than the number of inputs, the input data will be warped into a higher dimensional space. Second, we will show that the weights between the hidden neurons and the output neurons always define linear boundaries in the hidden neuron space. Consequently, the input data is first mapped non-linearly into a higher dimensional space and divided by linear planes. Then the linear decision boundaries in the hidden neuron space will be warped into complex decision boundaries in the input space.
منابع مشابه
Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks
Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملImplementation of a programmable neuron in CNTFET technology for low-power neural networks
Circuit-level implementation of a novel neuron has been discussed in this article. A low-power Activation Function (AF) circuit is introduced in this paper, which is then combined with a highly linear synapse circuit to form the neuron architecture. Designed in Carbon Nanotube Field-Effect Transistor (CNTFET) technology, the proposed structure consumes low power, which makes it suitable for the...
متن کاملDecision Boundary Formation of Neural Networks
In this paper, we provide a thorough analysis of decision boundaries of neural networks when they are used as a classifier. First, we divide the classifying mechanism of the neural network into two parts: dimension expansion by hidden neurons and linear decision boundary formation by output neurons. In this paradigm, the input data is first warped into a higher dimensional space by the hidden n...
متن کامل